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Abstract

A flight and wind tunnel investigation was con-
ducted to determine the effects of Reynolds number
on the installed boattail drag of an underwing na-
celle, Tests were run on a modified F-106B aircraft
and 0,05 and 0.22 scale wind tunnel models, Tests
were conducted at Mach numbers of 0.6 and 0.9 and
over a 16 to 1 range of Reynolds numbers. Highest
drag was obtained at intermediate Reynolds numbers
corresponding to about the lowest flight values and
that of the 0.22 scale model, Significantly lower
drag was obtained at both higher and lower Reynolds
numbers.

Introduction

An’ occurrence that is still happening too fre-
quently in the development of present generation
aircraft is to discover that in-flight performance
does n?t aﬁree with extrapolated wind test re-
sults, (1-3]  The most probable reason for this is
that wind tunnel tests are conducted at Reynolds
numbers considerably lower than flight values.

There are no wind tunnel facilities presently avail-
able for full scale, high speed model testing, so
small subscale model results must be used.

Many new multimission military aircraft are
utilizing turbofan engines. The turbofan engine has
a lower specific fuel consumption than the turbojet
engine resulting in an increase in aircraft range,
expecially at subsonic cruise. However, it does
necessitate a large nacelle and in the subsonic
cruise condition with the primary nozzle closed
there is a large boattail area. The aft end drag
for an aircraft with this engine can be a high per-
centage of the total aircraft drag.

Flight tests made at the Lewis Research Center
on boattailed nozzles suitable for use with turbofan
engines showed that Reynolds number had a signifi-
cant effect on boattail drag.(4) This study was
continued both in flight and with two wind tunnel
models., The flight test phase of this program uti-
lizes a modified F-106B, which has been modified to
carry two aft-mounted underwing nacelles housing
J85 afterburning turbojet engines. Three different
high-angle boattail geametries, typical of those
currently used for turbofan powered aircraft with
supersonic dash capability, were tested. Wind tun-
nel tests in the 8 by 6 Foot Supersonic Wind Tunnel
were conducted at low Reynolds numbers with a 0.05
scale F-106 full-span model, and at intermediate
Reynolds numbers with a 0.22 scale half-span model.
The 0.05 scale model was tested with solid nacelles
that had jet boundary simulators. The 0.22 scale
model was tested both with a turbojet engine simu-
lator and a second configuration with the nacelle
inlet closed off and a solid jet boundary simulator,
Data were obtained at Mach numbers of 0.6 and 0.9,
Each model gave data at a particular Reynolds number
and the aircraft was flown over a range of Reynolds

numbers at both Mach numbers. A 16 to 1 total range
in Reynolds number was achieved.

Flight Program

An F-106B (two seat) aircraft was modified to
carry two J85 afterburning engines as shown in
Fig. 1. Cutouts were made in the elevons, the two
underwing nacelles were attached, and a fuel system
was added in the missile bay., A digital data system
was installed along with scannervalves which sample
pressure orifices. The system permitted the boat-
tails to be instrumented with 90 static pressures.
The boattail statics were area weighted in ten rows
and all the drag data are from pressure integration.
Details of the other aircraft modifications are
given in Refs. 5 and 6, and details of the in-
strumentation system and electronics are given in
Ref. 7. A schematic of the research nacelle with
the boattail nozzle is shown in Fig, 2. The na-
celles were located at the 32 percent semispan with
0° cant and a downward incidence of 45© (relative to
the wing chord line) so the aft portion of the na-
celle was tangent to the aft wing lower surface.
Details of the wing modifications, nacelle shape,
and mounting strut are given in Ref. 5. The gas
generator for the nozzle was a J85-13 turbojet en-
gine with afterburner. In order to achieve the
ratio of nacelle cross-sectional area to nozzle exit
area similar to a turbofan engine installation, the
internal area of the nozzles had to be quite small.
Because of this small nozzle exit area the variable-
ares primary nozzle on the J85 was locked at approx-
imately 709.7 cm@ (110 in.Z) permitting operation
only at military power and below.

The aircraft was flown over a range of Reynolds
number at both Mach 0.6 and 0.9. The Reynolds num-
ber was varied by changing altitude. In order to
hold Mach number and angle-of-attack constant the
data were taken in coordinated turns. By flying in
turns at varying load factors, Reynolds number was
varied from 23x108 [3048 m (10 000 ft) altitude] to
57106 [9144 m (30 000 ft)] at Mach 0.6, and at
Mach 0.9 fram 23x106 [4572 m (15 000 ft)] to 65x10°8
(13 716 m (45 000 ft)]. The Reynolds number was
based on a characteristic length of 5.18 m (17 ft),
which takes into consideration the wing chord at
this station (approximately 7.32 m (24 ft)), and
the nacelle length (approximately 3.96 m (13 ft)).
At each Mach number the angle-of-attack was constant
over the range of altitude.

Tufts were mounted on the top of the boattails
and movies were taken with a camera mounted in the
tail., The camera was activated by the data system
and ran only during the 11,6 second data scan per-
iods. The films were used to ohserve the flow
patterns and detect the presence of separation,

Wind Tunnel Program

Both of the subscale models were tested in the
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8- by 6-Foot Supersonic Wind Tunnel. The 0,22
scale model was a half-span F-106 model mounted on
a reflection plate (fig. 3). This model was tested
with a turbojet engine simulator-and also with a
conical forebody closing the nacelle inlet and a
solid jet boundary simulator mounted on the nozzle
(fig. 4). The engine simulator incorporated a six-
stage, axial flow compressor powered by a three-
stage, axial-flow turbine, High pressure warm air
was used to drive the turbine and it was possible
to match the inlet mass flow ratio and the pressure
ratio of the J85 engine at military power with the
same area ratio (A¥*/Ayay). Details of the turbo-
jet simulator and its operating characteristics are
given in Ref. 8. The design characteristics of
this simulator permit independent operation over a
wide range of both inlet mass flow ratios and noz-
zle pressure ratios which equal those in flight.

By injecting makeup air, nozzle pressure ratio can
be varied independent of inlet mass flow ratio, or
inlet mass flow can be varied at a constant nozzle
pressure ratio,

The 0,05 scale model was a sting-mounted full-
span model (fig. S). For these tests the nacelles
were closed with conical forebodies (not shown in
fig. 5) and solid jet boundary simulators were used.
Both model nozzles had four rows of eight area-
weighted static pressures along the boattail. The
boattail drags for both the models and the aircraft
were obtained by pressure integration. On the 0.22-
scale model data were obtained at a Reynolds number
of 14,5x106 at Mach 0.6 and a Reynolds number of
18x106 at Mach 0.9, Data on this model were taken
at angles-of-attack of 3° and 7°. On the 0.05-scale
model data were obtained at a Reynolds number of
3.5x106 at Mach 0.6 and a Reynolds number of 4x106
at Mach 0.9. On this model it was possible to in-
vestigate a range of angle-of-attack from 0° to 15°.
These Reynolds numbers are based on a characteristic
length which is the appropriate scale of the flight
characteristic length.

Three different high-angle boattail geometries
were tested on the aircraft and on the two models
(fig. 8). The nozzles are designated by a four-
digit number. The first two numbers correspond to
the radius ratio, R/Re, multiplied by 100 and the
second two numbers correspond to the terminal boat-
tail angle. Thus nozzle 2524 has a radius ratio
R/R; of 0.25, and has a terminal boattail angle of
240, The radius ratio R/R;, is defined as the
ratio of the radius of the boattail shoulder to the
radius of a complete circular arc nozzle, with the
same boattail angle and ratio of nozzle exit area
to nacelle area. This numbering system will be used
throughout the remainder of this paper. Two of the
nozzles had 24° terminal angles and one had a 16°
terminal angle. These nozzles were part circular
arc transitioning into a conic section on the aft
portion. Detailed dimensions of the external con-
tours are given in Fig. 7. The boattail projected
area was equal to 75 percent of the nacelle pro-
Jjected area.

Results

The flow pattern and pressure distribution
around high-angle boattail nozzles is illustrated
in Fig, 8 for high subsonic flight speeds. -As the
flow approaches the boattail shoulder, the pressure
is slightly less than freestream because of the
presence of the wing and the nacelle upstream of
this point. As the flow traverses the boattail

shoulder it overexpands., If the radius of the-
shoulder is small, the overexpansion can be large.
Just downstream of the shoulder a recompression
begins, and if the flow is attached, it recompresses
along the remaining length of the boattail. At the
end of the boattail the flow has generally recom-
pressed to a value greater than the freestream
static pressure, This recompression region presents
an adverse pressure gradient to the local boattail
boundary layer. If the flow separates, the point
of separation on these nozzles is generally down-
stream of the shoulder and there is a loss of re-
compression causing an increase in the drag.

Figure 9 shows the effect of Reynolds number
on boattail drag coefficient at both Mach 0.6 and
0.9. As can be seen the drag coefficient was maxi-
mun at a value near the low end of the flight
Reynolds number range and dropped off as Reynolds
number was either raised or lowered. First consider
the portion of the curves that begins at the peak
and drops off as Reynolds number is increased. The
reduction in drag was primarily caused by a reduc-
tion in the amount of separation on the boattail.
This can be seen by examining the two flight pres-
sure distribution trends shown in Fig. 10. Nozzle
2516 which was a 16° boattail angle, had little
separation at any condition and showed little change
in drag over this range of Reynolds number varia-
tion., The other two nozzles, however, were 24°
boattails and incurred significant areas of separa-
ted flow, The pressures on these nozzles showed a
marked effect from separation changes. Separation
was not always evident from the pressure distribu-
tions alone, as will be shown later, so the tuft
films were helpful for detecting separation and re-
sulting flow patterns.

As the Reynolds number was increased in this
range, the boundary layer became thinner, With a
thinner turbulent boundary layer the flow will gen-
erally penetrate an adverse pressure gradient far-
ther without separating. Only a minute change in
separation axial location results in a significant
change in pressure level due to the sharp pressure
rise downstream of the boattail shoulder. So by
increasing the Reynolds number in this range the
separation was delayed to a point farther downstream
on the boattail. As the separation was reduced
more recompression was gained (fig. 10(b) through
through 10(f)) resulting in lower drag.

In addition to this simple concept of attached
flow-separated flow there was a dynamic phenomena
included. There were many cases where the boattail
pressures were not representative of either the
obviously attached flow (smooth recompression) or
obviously separated flow (flat cutoff in recovery).
Many of the pressure distributions fell between
these two limits. One possible explanation is that
the flow was oscillating between attached and sep-
arated, The pressures measured were time-averaged
by the instrumentation so they reflected a combi-
nation of the two actual conditions. When this
situation was present, the tufts on the boattail lay
flat pointing in the streamwise direction; however,
they still exhibited some movement of oscillations.
At high Reynolds numbers the pressures were more
nearly the value of attached flow and the tufts
moved less; at low Reynolds numbers the pressures
tended more toward a separated case and the tuft
movement increased., The two types of separation
usually occurred simultaneously at different cir-
cumferential regions of the boattail, and each local



region varied with changes in Reynolds number. The
net result at this end of the Reynolds number range
was a reduction in boatteil drag with increasing
Reynolds number.

Now consider the portion of the curve that be-
gins at the peak and drops off as Reynolds number
is decreased. The reduction in drag in this range
was primarily associated with a reduction of the
Overexpansion at the boattail shoulder. This can
be seen by examining the pressure curves in Fig, 10
again, including the curves from the two models.
In general at the lower Reynolds numbers the minimum
pressure at the shoulder increased resulting in low-
ered boattail drag. This effect has been observed
previously on isoclated nozzle tests. 9 As the
boundary layer becomes thicker (lower Reynolds num-
bers) it softens the turn the flow makes at the
shoulder, The boundary layer effectively increases
the radius at the shoulder so the flow doesn't expe-
rience as sharp a turn, accelerates less and the
pressures near the shoulder are therefore higher.

This can be seen on nozzle 2516 which had very
little separation and also on nozzle 6524 which had
8 limited amount of separated flow. On nozzle 2524
there was a great deal of separation which continued
to move upstream with lower Reynolds numbers. Again
there was a reduction in the overexpansion at the
shoulder, eliminating almost all the overexpansion.
This nearly eliminated the turn at the shoulder so
the pressures remained near freestream static.

There was still a small recompression on the aft
boattail, but the recompression began at a much
higher pressure, The aft boattail pressures recom-
pressed to high values, yielding a larger decrease
in drag then seen on the other two nozzles,

Figure 11 shows a comparison of indicated sep-
aration from tufts and pressure distributions, The
pressure curves shown are four rows on the upper
portion of the nozzle. The tufts were mounted on
the nozzle between the rows of pressure orifices.
The tuft picture is one frame from the high-speed
movie film, An initial examination of the pressure
curves alone shows they are similar, and none is
obviously representative of a typical separated or
attached flow. If a choice were to be made one
might say they were all attached flows. However,
examining the tuft picture shows the last three
tufts on the A and B rows indicated separated flow,
while the other two rows indicated attached flow
(there is a fourth row of tufts that is difficult to
see in the photograph). A closer examination of the
pressure curves will reveal small differences in
level and shape of the No. 1 and 2 pressure rows
which correspond to the separated condition. How-
ever, these differences are so small that they could
not be used alone to predict separation. Much of
the data recorded on the flight tests was similar to
this. One explanation for this is that the flow
was unsteady and oscillated between attached and
separated as discussed previously. The pressures
are time averaged so that this type of oscillation
produces values that are intermediate between those
of the two flow conditions. More recent unpublished
dynamic boundary-layer data on nozzle 2524 has veri-
fied that the oscillations were occurring. Random
oscillations at frequencies below 100 Hz were de-
tected in flight with a dynamic boundary layer rake
mounted near the end of the boattail.

The 0.22 scale model was run with both a turbo-
jet engine simulator and with the nacelle inlets

closed off and included jet boundary simulators.
(This latter configuration duplicated the nacelle
geometry used for the 0.05 scale model.) A com-
parison of these two operating conditions is shown
in Fig. 12, where boattail drag variation with noz-
zle pressure ratio is shown. The jet boundary sim-
ulator data are plotted at the design pressure
ratio for these nozzles (pg/py = 1.0). Very good
agreement is seen between the two for all three
nozzles, for conditions presented here. Therefore
the 0.05 scale data is valid for showing a Reynolds
number effect and is not the result of using a
closed inlet a?d solid jet boundary simulator. It
has been shown(10) that closing off the nacelle with
a conical forebody has a negligible effect on boat-
tail drag at subsonic speeds. Also, from Fig. 12,
the effect of nozzle pressure ratio on boattail
drag is relatively small for the range of nozzle
pressure ratio investigated.

The effect of angle-of-attack on boattail drag
is shown in Fig, 13 for the 0.05-scale model.
Angle-of-attack had very little effect on the boat-
tail drag at Mach 0.6, but did have a significant
effect at high angles (8° and above), at Mach 0.9.
At Mach 0.9 the flight angle-of-attack range was
lower where the effects are small, Most of the
Mach 0.9 data shown here were at the same angle-of-
attack for flight and wind tunnel.

To summarize, it has been found that Reynolds
number can significantly affect installed boattail
drag coefficient., This result is shown again in
Pig. 14 along with schematics of the pressure dis-
tributions at the three regions of the drag curve.
The apparent effects seen on the boattail pressures
generate an understanding of the basic phenomena
which resulted in the unusual shape seen for the
drag curve. At very low Reynolds numbers (0.05-
scale model) there is very little overexpansion at
the boattail shoulder, most probably due to the
very thick boundary layer. At these low Reynolds
numbers the separation point is closest to the boat-
tail shoulder. However, since the pressures are not
low at the shoulder only a small recompression is
required to minimize the drag, Therefore the sep-
aration does not result in a severe penalty.

As the Reynolds number is increased (0.22 scale
and low flight values) the boundary layer thins and
there is more overexpansion at the shoulder. This
overexpansion requires a significant recompression
to maintain low drag; but the separation point is
still relatively close to the shoulder and prevents
the recompression, At this condition the separation
combined with the large overexpansion at the shoul-
der is a severe penalty resulting in maximum drag.

As the Reynolds number is increased still fur-
ther (to high flight values) the boundary layer
thins even more, The overexpansion at the shoulder
remains essentially the same, but the separation
point moves aft on the boattail. At the highest
Reynolds number values there is very little separa-
tion left and the flow recompresses generally to
values above freestream static, Because the sep-
aration is now gone the drag values are again rela-
tively low.

Conclusions
A series of wind tunnel and flight tests have

been conducted to determine the effect of Reynolds
number on the installed boattail drag at subsonic



speeds, The high-angle boattail nozzles tested
were subsonic cruise configurations of nozzles
designed for turbofan-powered aircraft with super-
sonic dash capability. Flight data are compared
with 0.22-scale and 0.05-scale model data. The
following results were obtained,

1. Highest drag was obtained at intermediate
Reynolds numbers corresponding to about the lowest
flight values and that of the 0.22-scale model.
Significantly lower drag was obtained at both high-
er and lower Reynolds numbers.

2. Changes in Reynolds number had two effects
on the boattail pressures. The amount of over-
expansion at the boattail shoulder was significant-
ly reduced at very low wind tunnel Reynolds numbers,
resulting in low drag. At higher flight values,
increasing the Reynolds number reduced the amount
of separation and increased the recompression on
the aft portion of the boattail, lowering the drag.

3. Separation cannot always be detected with
static pressure distributions alone.

4, Boattail drag data obtained in the wind
tunnel with a solid jet boundary simulator agreed
well with data using a turbojet engine simulator
at the design pressure ratio.

5. Boattail drag is relatively insensitive to
angle-of-attack changes at Mach 0.6, At Mach 0,9
there is no effect until an angle-of-attack of
approximately 8° and then the boattail drag in-
creases with angle-of-attack.

Symbols

Anax nacelle area at boattail juncture

A% nozzle geometric throat area

Cp boattail pressure drag coefficient

CP pressure coefficient, p-py/0.7 poMO2

d nacelle diameter at boattail juncture

2 nozzle length

MO free-stream Mach number

P total pressure at nozzle throat

p boattail static pressure

Pe static pressure nozzle exit

Pg freejstream static pressure

R radius at nozzle boattail shoulder

Rc radius of a complete circular arc boat-
tail with a fixed exit to nacelle area
ratio and a fixed terminal boattail
angle

Re _ Reynolds number--based on a characteristic

length of 5.18 m (17 ft) for flight and
appropriately scaled values for the wind
tunnel models

10.

axial distance from boattail shoulder, to
the point where the boattail contour
becomes a conic section

axial distance from beginning of boattail
shoulder

diameter at the nozzle exit
length of solid jet boundary simulator
angle-of-attack
terminal boattail angle
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; C-69-2871
Figure 1. - Modified F-106B in flight.
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Figure 2. - Nacelle-engine installation.
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Figure 3. - 0.22 scale F-106 model in 8x6 tunnel.
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Figure 4. - 0. 22 Scale model turbojet simulator and nacelle installation.
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Figure 9. - Effect of Reynolds number on boattail drag coefficient.



SOURCE  REYNOLDS
NUMBER,
Re
o FLIGHT 46. 5x100
2~ © FLGHT 27. 1x10°
O 0,22 SCALE 14, 4x10°
& 0.05SCALE  3.2x100
BOATTAIL 0
PRESSURE
COEFFICIENT,
c
P
B N T TR N T N O
(a) NOZZLE 2516, Mo = 0. 6.
4 o FLIGHT  62.0x10°
a o FLIGHT  2.1x108
0 0.22 SCALE 18.0x100
& .05 SCALE  3.3x100
2
BOATTAIL

PRESSURE 0 -
COEFFICIENT,

Cp

| T " T O O B
-6 -4 -2 0 .2 .4 .6 .8 1.0
NONDIMENSIONAL POSITION COORDINATE, x/t

(b} NOZZLE 2516, Mo = 0.9.

Figure 10. - Effect of Reynolds number on boat-
tail pressure distribution.
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SOURCE  REYNOLDS
NUMBER,
Re
O FLIGHT 48, 8x10°
© FLIGHT 23, 1x100
2~ o 0.22SCALE 14.4x100
& 0.05SCALE  3.2x100
0
BOATTAIL oa
PRESSURE _,|  ©
COEFFICIENT,
Cp
_'4.__
Py S I
(c) Nozzle 2524, Mo = 0.6,
O FLIGHT 65. 5x100
) o FLGHT  29.5x10
: o 0.22 SCALE 18.0x108
A 0.05SCALE  3.3x10°
0
BOATTAIL BA
PRESSURE
COEFFICIENT, [
Cp
A
(o}
Y N T N R O

-6 -4 -2 6 .2 .4 .6 .8 10
NONDIMENSIONAL POSITION COORDINATE, x/1

(d) NOZZLE 2524, Mo = 0.9.

Figure 10. - Continued.



SOURCE  REYNOLDS
NUMBER,
Re
.2}~ O FUGHT 488100
© FLIGHT 2. 1108
o 0.22 SCALE 14, 4x10°
A 0.05SCALE  3.2x10°
BOATTAIL 0
PRES SURE
COEFFICIENT,
C
P
Y N R N I O S S
() NOZZLE 6524, Mo = 0. 6.
4T o FUGHT 65 5100
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o 0.22 SCALE 18.0x100
oL 2 0.05SCALE 3.3x10
BOATTAIL
PRES SURE
COEFFICIENT,
Cp
-2
I I

-6 -4 -2 0 .2 .4 .6 .8 1.0
NONDIMENSIONAL POSITION COORDINATE, x/1

(f) NOZZLE 6524, Mo = 0.9.
Figure 10. - Concluded.
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(a) TUFT PICTURE.
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Figure 11. - Determination of separation. Nozzle 2524;
Mo, 0.9; Re, 49. 2x10%.
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Figure 12. - Effect of pressure ratio on boattail drag coefficient on
the 0. 22 scale model; Mo, 0.9; Re, 18.0x10°.
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Figure 13. - Effect of angle of attack on boat-
tail drag coefficient with the 0.05 scale
model.
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Figure 14. - Summary of Reynolds number effects.
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